Math Virtual Learning

College Algebra

May 22, 2020

College Algebra
 Lesson: May 22, 2020

Objective/Learning Target:

Students will solve equations using matrices.

Warm Up Activity:

Practice solving simple linear equations.

Linear Equations

Lesson:

Watch this video on how to solve matrix equations. We encourage you to have your own sheet of paper out and work along with the video.

Matrices to solve
 a system of
 - b equations

8 Khan Academy

Practice:

Click the link to practice matrix equations
Practice

Additional Practice: solve the system using inverse matrices

1)

$$
\begin{array}{r}
3 x+8 y=5 \\
4 x+11 y=7
\end{array}
$$

2)

$$
\begin{array}{r}
5 x+15 y+56 z=35 \\
-4 x-11 y-41 z=-26 \\
-x-3 y-11 z=-7
\end{array}
$$

Additional Practice Answers: Solutions to Additional Practice

1) The solution is $(-1,1)$.
2)

The solution is $(1,2,0)$.

Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

Additional Practice Problem 1 Slide 1:
 Then

$$
A=\left[\begin{array}{ll}
3 & 8 \\
4 & 11
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right], B=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
3 & 8 \\
4 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

First, we need to calculate A^{-1}. Using the formula to calculate the inverse of a 2 by 2 matrix, we have:

$$
\begin{aligned}
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{3(11)-8(4)}\left[\begin{array}{cc}
11 & -8 \\
-4 & 3
\end{array}\right] \\
& =\frac{1}{1}\left[\begin{array}{cc}
11 & -8 \\
-4 & 3
\end{array}\right]
\end{aligned}
$$

So,
Additional Practice Problem 1 Slide 2:

$$
A^{-1}=\left[\begin{array}{rr}
11 & -8 \\
-4 & 3
\end{array}\right]
$$

Now we are ready to solve. Multiply both sides of the equation by A^{-1}.

$$
\begin{aligned}
& \left(A^{-1}\right) A X=\left(A^{-1}\right) B \\
& {\left[\begin{array}{lr}
11 & -8 \\
-4 & 3
\end{array}\right]\left[\begin{array}{rr}
3 & 8 \\
4 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
11 & -8 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
11(5)+(-8) 7 \\
-4(5)+3(7)
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]}
\end{aligned}
$$

Additional
Write the equation $A X=B$.

$$
\left[\begin{array}{ccc}
5 & 15 & 56 \\
-4 & -11 & -41 \\
-1 & -3 & -11
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
35 \\
-26 \\
-7
\end{array}\right]
$$

First, we will find the inverse of A by augmenting with the identity.

$$
\left[\begin{array}{rrrrrr}
5 & 15 & 56 & 1 & 0 & 0 \\
-4 & -11 & -41 & 0 & 1 & 0 \\
-1 & -3 & -11 & 0 & 0 & 1
\end{array}\right]
$$

Multiply row 1 by $\frac{1}{5}$.

$$
\left[\begin{array}{cccccc}
1 & 3 & \frac{56}{5} & \frac{1}{5} & 0 & 0 \\
-4 & -11 & -41 & 0 & 1 & 0 \\
-1 & -3 & -11 & 0 & 0 & 1
\end{array}\right]
$$

Multiply row 1 by 4 and add to row 2 .

$$
\left[\begin{array}{cccccc}
1 & 3 & \frac{56}{5} & \frac{1}{5} & 0 & 0 \\
0 & 1 & \frac{19}{5} & \frac{4}{5} & 1 & 0 \\
-1 & -3 & -11 & 0 & 0 & 1
\end{array}\right]
$$

Add row 1 to row 3.

Additional

Practice
Problem 2 Slide 2:

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 3 & \frac{56}{5} & \frac{1}{5} & 0 & 0 \\
0 & 1 & \frac{19}{5} & \frac{4}{5} & 1 & 0 \\
0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 0 & -\frac{1}{5} & -\frac{11}{5} & -3 & 0 \\
0 & 1 & \frac{19}{5} & \frac{4}{5} & 1 & 0 \\
0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Multiply row 3 by 5 .

$$
\left[\begin{array}{cccccc}
1 & 0 & -\frac{1}{5} & -\frac{11}{5} & -3 & 0 \\
0 & 1 & \frac{19}{5} & \frac{4}{5} & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 5
\end{array}\right]
$$

> Inspiring Greathess Multiply row 3 by $\frac{1}{5}$ and add to row 1.

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & -3 & 1 \\
0 & 1 & \frac{19}{5} & \frac{4}{5} & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 5
\end{array}\right]
$$

Additional Multiply row 3 by $-\frac{19}{5}$ and add to row 2 . Practice Problem 2

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & -3 & 1 \\
0 & 1 & 0 & 1 & -3 & 1 \\
-19 \\
0 & 0 & 1 & 1 & 0 & 5
\end{array}\right]
$$ Slide 3:

So,

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & -3 & 1 \\
-3 & 1 & -19 \\
1 & 0 & 5
\end{array}\right]
$$

Multiply both sides of the equation by A^{-1}. We want $A^{-1} A X=A^{-1} B$:

$$
\left[\begin{array}{rrr}
-2 & -3 & 1 \\
-3 & 1 & -19 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{rrr}
5 & 15 & 56 \\
-4 & -11 & -41 \\
-1 & -3 & -11
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{rrr}
-2 & -3 & 1 \\
-3 & 1 & -19 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{r}
35 \\
-26 \\
-7
\end{array}\right]
$$

Thus,

$$
A^{-1} B=\left[\begin{array}{r}
-70+78-7 \\
-105-26+133 \\
35+0-35
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

